Title: | Smoothed M-Estimators for 1-Dimensional Location |
---|---|
Description: | Some M-estimators for 1-dimensional location (Bisquare, ML for the Cauchy distribution, and the estimators from application of the smoothing principle introduced in Hampel, Hennig and Ronchetti (2011) to the above, the Huber M-estimator, and the median, main function is smoothm), and Pitman estimator. |
Authors: | Christian Hennig <[email protected]> |
Maintainer: | Christian Hennig <[email protected]> |
License: | GPL |
Version: | 0.1-3 |
Built: | 2025-03-17 04:02:56 UTC |
Source: | https://github.com/cran/smoothmest |
Density for and random values from double exponential (Laplace)
distribution with density exp(-abs(x-mu)/lambda)/(2*lambda)
,
for which the median is the ML estimator.
ddoublex(x, mu=0, lambda=1) rdoublex(n,mu=0,lambda=1)
ddoublex(x, mu=0, lambda=1) rdoublex(n,mu=0,lambda=1)
x |
numeric vector. |
mu |
numeric. Distribution median. |
lambda |
numeric. Scale parameter. |
n |
integer. Number of random values to be generated. |
density.
random number generation.
ddoublex
gives out a vector of density values.
rdoublex
gives out a vector of random numbers generated by
the double exponential distribution.
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
set.seed(123456) ddoublex(1:5,lambda=5) rdoublex(5,mu=10,lambda=5)
set.seed(123456) ddoublex(1:5,lambda=5) rdoublex(5,mu=10,lambda=5)
Density for and random values from Huber's least favourable distribution, see Huber and Ronchetti (2009).
dhuber(x, k=0.862, mu=0, sigma=1) edhuber(x, k=0.862, mu=0, sigma=1) rhuber(n,k=0.862, mu=0, sigma=1)
dhuber(x, k=0.862, mu=0, sigma=1) edhuber(x, k=0.862, mu=0, sigma=1) rhuber(n,k=0.862, mu=0, sigma=1)
x |
numeric vector. |
k |
numeric. Borderline value of central Gaussian part of the distribution. The default values refers to a 20% contamination neighborhood of the Gaussian distribution. |
mu |
numeric. distribution mean. |
sigma |
numeric. Distribution scale ( |
n |
integer. Number of random values to be generated. |
density.
density, and computes the contamination proportion
corresponding to k
.
random number generation.
dhuber
gives out a vector of density values.
edhuber
gives out a list with components val
(density
values) and eps
(contamination proportion).
rhuber
gives out a vector of random numbers generated by
Huber's least favourable distribution.
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
set.seed(123456) edhuber(1:5,k=1.5) rhuber(5)
set.seed(123456) edhuber(1:5,k=1.5) rhuber(5)
Auxiliary functions for pitman
.
pdens(z, x, dfunction, ...) sdens(z, x, dfunction, ...) dens(x, dfunction, ...)
pdens(z, x, dfunction, ...) sdens(z, x, dfunction, ...) dens(x, dfunction, ...)
z |
numeric vector. |
x |
numeric vector. |
dfunction |
a density function defining the distribution for which the Pitman estimator is computed. |
... |
further arguments to be passed on to the density function
|
product of density values at x
.
vector of z*dens(x-z)
.
vector of dens(x-z)
.
Numeric value (dens
) or vector.
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
dens(1:5,dcauchy) pdens(1:5,0,dcauchy) sdens(1:5,0:2,dcauchy)
dens(1:5,dcauchy) pdens(1:5,0,dcauchy) sdens(1:5,0:2,dcauchy)
Pitman estimator of one-dimensional location, optimal with scale
assumed to be known.
Calculated by brute force (using integrate
).
pitman(y, d=ddoublex, lower=-Inf, upper=Inf, s=mad(y), ...)
pitman(y, d=ddoublex, lower=-Inf, upper=Inf, s=mad(y), ...)
y |
numeric vector. Data set. |
d |
a density function defining the distribution for which the Pitman estimator is computed. |
lower |
numeric. Lower bound for the involved integrals (should
be |
upper |
numeric. Lower bound for the involved integrals (should
be |
s |
numeric. Estimated or assumed scale/standard deviation. |
... |
further arguments to be passed on to the density function
|
The estimated value.
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Pitman, E.J. (1939) The estimation of the location and scale parameters of a continuous population of any given form. Biometrika 30, 391-421.
set.seed(10001) y <- rdoublex(7) pitman(y,ddoublex) pitman(y,dcauchy) pitman(y,dnorm)
set.seed(10001) y <- rdoublex(7) pitman(y,ddoublex) pitman(y,dcauchy) pitman(y,dnorm)
smoothm
is an interface for all the smoothed
M-estimators introduced in Hampel, Hennig and Ronchetti (2011) for
one-dimensional location, the Huber- and Bisquare-M-estimator and the
ML-estimator of the Cauchy distribution, calling all the other
functions documented on this page.
smoothm(y, method="smhuber", k=0.862, sn=sqrt(2.046/length(y)), tol=1e-06, s=mad(y), init="median") sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median") smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y), smmed=FALSE, init="median") mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median") smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)), s=mad(y), init="median") mlcauchy(y, tol = 1e-06, s=mad(y)) smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
smoothm(y, method="smhuber", k=0.862, sn=sqrt(2.046/length(y)), tol=1e-06, s=mad(y), init="median") sehuber(y, k = 0.862, tol = 1e-06, s=mad(y), init="median") smhuber(y, k = 0.862, sn=sqrt(2.046/length(y)), tol = 1e-06, s=mad(y), smmed=FALSE, init="median") mbisquare(y, k=4.685, tol = 1e-06, s=mad(y), init="median") smbisquare(y, k=4.685, tol = 1e-06, sn=sqrt(1.0526/length(y)), s=mad(y), init="median") mlcauchy(y, tol = 1e-06, s=mad(y)) smcauchy(y, tol = 1e-06, sn=sqrt(2/length(y)), s=mad(y))
y |
numeric vector. Data set. |
method |
one of |
k |
numeric. Tuning constant. This is used for |
sn |
numeric. This is used for |
tol |
numeric. Stopping criterion for algorithms (absolute difference between two successive values). |
s |
numeric. Estimated or assumed scale/standard deviation. |
init |
|
smmed |
logical. If |
The following estimators can be computed (some computational details are given in Hampel et al. 2011):
method="huber"
and function
sehuber
compute the standard Huber estimator (Huber and
Ronchetti 2009). The only differences from huber are
that s
and init
can be specified and that the
default k
is different.
method="smhuber"
and function
smhuber
compute the smoothed Huber estimator (Hampel et
al. 2011).
method="bisquare"
and function
bisquare
compute the bisquare M-estimator (Maronna et
al. 2006). This uses psi.bisquare
.
method="smbisquare"
and function
smbisquare
compute the smoothed bisquare M-estimator (Hampel et
al. 2011). This uses psi.bisquare
method="cauchy"
and function mlcauchy
compute the ML-estimator for the Cauchy
distribution.
method="smcauchy"
and function
smcauchy
compute the
smoothed ML-estimator for the Cauchy distribution (Hampel et
al. 2011).
method="smmed"
and function
smhuber
with median=TRUE
compute the
smoothed median (Hampel et al. 2011).
A list with components
mu |
the location estimator. |
method |
see above. |
k |
see above. |
sn |
see above. |
tol |
see above. |
s |
see above. |
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
library(MASS) set.seed(10001) y <- rdoublex(7) median(y) huber(y)$mu smoothm(y)$mu smoothm(y,method="huber")$mu smoothm(y,method="bisquare",k=4.685)$mu smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu smoothm(y,method="cauchy")$mu smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu
library(MASS) set.seed(10001) y <- rdoublex(7) median(y) huber(y)$mu smoothm(y)$mu smoothm(y,method="huber")$mu smoothm(y,method="bisquare",k=4.685)$mu smoothm(y,method="smbisquare",k=4.685,sn=sqrt(1.0526/7))$mu smoothm(y,method="cauchy")$mu smoothm(y,method="smcauchy",sn=sqrt(2/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7))$mu smoothm(y,method="smmed",sn=sqrt(1.0526/7),init="mean")$mu
Psi-functions, derivatives and further auxiliary functions used for
computing the estimators in smoothm
.
psicauchy(x) psidcauchy(x) likcauchy(x,mu) flikcauchy(y,x,mu,sn) smtfcauchy(x,mu,sn) smcipsi(y, x, sn=sqrt(2/length(x))) smcipsid(y, x, sn=sqrt(2/length(x))) smcpsi(x, sn=sqrt(2/length(x))) smcpsid(x, sn=sqrt(2/length(x))) smbpsi(y, x, k=4.685, sn=sqrt(2/length(x))) smbpsid(y, x, k=4.685, sn=sqrt(2/length(x))) smbpsii(x, k=4.685, sn=sqrt(2/length(x))) smbpsidi(x, k=4.685, sn=sqrt(2/length(x))) smpsi(x,k=0.862,sn=sqrt(2/length(x))) smpmed(x,sn=sqrt(1/5))
psicauchy(x) psidcauchy(x) likcauchy(x,mu) flikcauchy(y,x,mu,sn) smtfcauchy(x,mu,sn) smcipsi(y, x, sn=sqrt(2/length(x))) smcipsid(y, x, sn=sqrt(2/length(x))) smcpsi(x, sn=sqrt(2/length(x))) smcpsid(x, sn=sqrt(2/length(x))) smbpsi(y, x, k=4.685, sn=sqrt(2/length(x))) smbpsid(y, x, k=4.685, sn=sqrt(2/length(x))) smbpsii(x, k=4.685, sn=sqrt(2/length(x))) smbpsidi(x, k=4.685, sn=sqrt(2/length(x))) smpsi(x,k=0.862,sn=sqrt(2/length(x))) smpmed(x,sn=sqrt(1/5))
x |
numeric vector. |
mu |
numeric. |
y |
numeric vector. |
sn |
numeric. Smoothing constant. See |
k |
numeric. Tuning constant. See |
psi-function for Cauchy ML-estimator at x
.
derivative of psicauchy
at x
.
Cauchy likelihood of data x
for mode
parameter mu
.
vector of Gaussian density at y
with mean 0 and
st. dev. sn
times Cauchy log-likelihood of x
with
mode parameter mu+y
.
integral of flikcauchy
with y
running from -Inf
to Inf
.
psicauchy(x-y)*dnorm(y,sd=sn)
.
derivative of smcipsi
w.r.t. x
.
psi-function for smoothed Cauchy
ML-estimator. Integral of smpcipsi
with y
running from -Inf
to Inf
.
integral of smpcipsid
with y
running from -Inf
to Inf
.
(x-y)*psi.bisquare(x-y,c=k)*dnorm(y,sd=sn)
.
psi.bisquare(x-y,c=k,deriv=1)*dnorm(y,sd=sn)
.
psi-function for smoothed bisquare
M-estimator. Integral of smbpsi
with y
running from -Inf
to Inf
.
integral of smbpsid
with y
running from -Inf
to Inf
.
psi-function for smoothed Huber-estimator at x
.
psi-function for smoothed median at x
.
A numeric vector.
Christian Hennig [email protected] http://www.homepages.ucl.ac.uk/~ucakche/
Hampel, F., Hennig, C. and Ronchetti, E. (2011) A smoothing principle for the Huber and other location M-estimators. Computational Statistics and Data Analysis 55, 324-337.
Huber, P. J. and Ronchetti, E. (2009) Robust Statistics (2nd ed.). Wiley, New York.
Maronna, A.R., Martin, D.R., Yohai, V.J. (2006). Robust Statistics: Theory and Methods. Wiley, New York
smoothm
, psi.huber
,
psi.bisquare
psicauchy(1:5) psidcauchy(1:5) likcauchy(1:5,0) flikcauchy(3,1:5,0,1) smtfcauchy(1:5,0,1) smcipsi(1,1:3) smcipsid(1,1:3) smcpsi(1:5) smcpsid(1:5) smbpsi(1,1:5) smbpsid(0:4,1:5) smbpsii(1:5) smbpsidi(1:5) smpsi(1:5) smpmed(1:5)
psicauchy(1:5) psidcauchy(1:5) likcauchy(1:5,0) flikcauchy(3,1:5,0,1) smtfcauchy(1:5,0,1) smcipsi(1,1:3) smcipsid(1,1:3) smcpsi(1:5) smcpsid(1:5) smbpsi(1,1:5) smbpsid(0:4,1:5) smbpsii(1:5) smbpsidi(1:5) smpsi(1:5) smpmed(1:5)